
Perspectives in Electromagnetics:
Creating Simple Graphical User Interfaces for Electromagnetic Codes

Daniel S. Katz

Graphical User Interfaces

Electromagnetic software (and software in general) at one
time was coded onto a series of cards. These card decks
contained both code and input data. When the cards (and job
control cards) were fed into a computer, the program was
compiled and run, and the results were printed out by a line
printer. This was the common method for running programs
until the early 1980s, and this method was still being used at
some aerospace companies and universities at least as recently
as 1990. Around 1970 interactive terminals (that ran at a speed
fast enough to be useful) started to appear. These terminals,
along with the introduction of disks for storage, allowed users
(rather than operators) to type simple commands to run codes,
and view the numbers that were the output. Next, programs
were written to display the output in a graphical format.
Shortly after the introduction of interactive terminals, codes
began to be written that allowed users to interact with running
jobs. From there, it was a short leap to changing the analysis
programs to directly create the graphical output, and to accept
graphical input, or at least to be controlled graphically, through
a graphical user interface (GUI). However, many codes have
not yet reached this stage, and they are still written for batch
processing (controlled by typing a command, which does some
processing, and creates one or more data files). Sometimes,
this is because the analysis takes a long time to run, and is
performed in a batch environment (where the series of
commands is stored to be a run at a time that is convenient for
the computer running the code, not for the user.) Other times,
the reasons are purely historical (that is how the code was
written , and no one has ever spent any time changing it).

In 1997, a group at JPL decided to create a user-friendly
tool for the design and analysis of millimeter-wave instruments
(“D. S. Katz, A. Borgioli, T. Cwik, C. Fu, W. A. Imbriale, V.
Jamnejad, and P. L. Springer, “A Simple Tool for the Design
and Analysis of Multiple-Reflector Antennas in a Multi-
Disciplinary Environment,” submitted to 1999 IEEE AP-S
International Symposium). The main analysis code used by
this tool was a physical optics program that had been developed
at JPL (W. A. Imbriale and R. E. Hodges, “The Linear-Phase
Triangular Facet Approximation in Physical Optics Analysis of
Reflector Antennas,” App. Comp. Electromag. SOC. J., v. 6, pp.
52-73, 1991). The first focus of our tool was to build a GUI for
the analysis code. Our intention was to not modify the Fortran
code; simply to write a GUI that would enable us to run the
existing code. We decided to use TcyTk for a number of
reasons. 1. We were interested in writing a GUI that could be
run on multiple platforms (Macintosh, Window, and UNIX),
which led us to examine JavdCORBA and TcyTk. 2. We
wanted to be able to run the analysis code on a number of
supercomputer platforms, and that required that we be able to

The author is with the Jet Propulsion Laboratory, California
Institute of Technology, 4800 Oak Grove Drive, MS 168-522,
Pasadena, CA 91 109-8099. E-mail address: d.katz@ieee.org

Figure 1. A sample screen from MOD Tool

communicate easily between the platforms. This led us away
from JavdCORBA, as we did not have ORBs for all the
platforms, and the cost of some of the ORBs was prohibitory.
3. We wanted the GUI to be simple to write, as those of us that
were planning to write it were engineers, not GUI designers.
Therefore we chose TcyIlr, and built a package called MOD
Tool. A sample window can be seen in figure 1. The material
discussed in this column overlaps with MOD Tool, but the goal
here is simplicity, rather than creating a full package.

Introducing TcVTk

One method for writing graphical user interfaces (GUIs)
for compiled electromagnetic programs is through the use of
Expectk. Expectk is built on TcVTk, as will be explained later.
The graphics that are used in expect are the same as those used
in T c m . The ease of creating graphical programs in Tcl/Tk is
best shown through the following simple example.

On a system where TcVTk has been installed, the user may
run w i s h. w i s h is one of two interpreters that come with
Tcl/Tk. It stands for windowing shell. (The other is tclsh, a
non-graphic Tcl shell.) On a Unix machine, you should type
wish, and a small window will appear. On a Mac or PC,
double-clicking on the wish icon will start the wish program.
Once wish is started, it will either return a prompt %, or a
console window will appear that has this prompt. Type the
following into that window.

mailto:d.katz@ieee.org

button .b - text "Press Me!" \

labe l .1 -text "Hello World!"
pack .l .b

-command {puts "hello world")

The first two commands create widgets named . b and .l, and
the third command causes these widgets to be placed on the
screen. This will cause a window containing something similar
to figure 2 to be generated. This shows that the label and the
button are created, and as the reader can discover, pressing the
button will cause the words " he1 l o world" to print on the
screen or the console window. Type "exi t" in the screen or
the console window to exit wish. This example is meant to
show the simplicity of TcVTk, and the user can experiment
with the code to make changes.

Tcl was originally created by John Ousterhout in 1988 as a
command language for interactive tools. Tk is a toolkit, based
on Tcl, also created while John Ousterhout was at the
University of California at Berkeley. Much further
development on TcyTk occurred at Sun Microsystems, Inc.
Scriptics Corporation was founded in 1998 to continue Tcmk
development, after Sun decided that this was not an area it
should be directly supporting. The current version of Tcl/Tk is
always freely available at the Scriptics web site , listed at the
end of this column.

The simplest use of expect is to run some job, to scan the
output of that job to find a certain pattern, and to respond to
that pattern. This scan-response pair can occur many times,
and both the pattern being scanned for and the response being
sent can be Tcl/Tk variables. This means that a Tcl/Tk
program may be written that will interact with another program.
As the Tcl/Tk program can be graphical, this is a simple
method for writing a GUI that can control a job, without having
to change the underlying job. The user of the GUI only sees
the GUI, and not the job. The person that creates the code to
run the job does not have to know anything about the GUI, and
in fact, the two parts of the interactive code can be written in
different periods of time. A GUI writer can create a GUI to run
a code without knowing anything about the code, other than
how it is run.

A GUI for a Batch Code

Let's now consider an electromagnetic code, such as the
physical optics code mentioned previously. This code was
written to be run in a batch environment. It reads an input file
to determine what geometry to analyze and what outputs to
create, then performs the analysis, and writes the output files.
This type of code is fairly amenable to being controlled by a
GUI, since the GUI simply writes the input file and then runs
the code. For simplicity, let's assume that the input file can be

Figure 2. The TcyTk hello window. On most systems, the
window will be surrounded by some decorations created by the
window manager. These decorations will vary by system.

used to control the analysis of a pair of mirrors in the presence
of a feed horn, and can output a few antenna patterns. The
input file might thus contain the name of a file describing the
feed horn, the names of two files describing the mirrors, and a
few parameters that describe the antenna patterns to be
generated. We can create a simple TcyTk widget that consists
of an entry box, and a Browse button that uses the built-in
TcVTk call tk-getOpenFile that creates a file browser with
which the user can select a file, and have that file name (and
path) returned into the entry box. An example widget of this
type is shown in figure 3, and the Unix version of the browse
window is shown in figure 4. We can create a window that
contains three of these widgets, and a number of other entry
widgets, one for each parameter that is required to control the
antenna patterns (perhaps Theta-start, Theta-stop,
Theta-increment, Phi-state. Phi-stop, and Phi-increment.)
Then we can create a button called "Run", and attach to it a
little Tcl code that takes the data from the entry boxes, writes
this information into a file, and then starts the analysis job
using the Tcl exec command. That's it. One of the nice
things about Tcl/Tk is that this can easily be done step by step.
First, we can create Tcl code that reads keyboard input, creates
an analysis code's input file, and runs that code. Then we can
create a Tk program that doesn't yet do anything, except look
correct. By this I mean that it has three entry boxes for file
names, a number of browse buttons, some entry boxes for the
antenna pattern controls, and a run button. Then we can start
putting these two codes together, one step at a time, testing
each step as we create it. Once all this is working, we could
create a new GUI that allows us to view the output files, and
then we could combine the two GUIs, so that the new GUI
would set up a run. start it, and then provide the user tools to
view the output. This illustrates one of the best features of
Tcl/Tk: the ability to make incremental changes and to
combine many pieces into one GUI.

Figure 3. A sample widget for selecting file names

Figure 4. The Unix tk-get0penFile widget

Introducing Expect

Expect was created in 1990 by Don Libes, at the National
Institute of Standards (NIST) It is used for automation of
interactive programs. Basically, Expect can pretend to be an
interactive user for a given application. The initial ideas for
Expect came from the creation of a program used to automate
the initial login and command in a telnet session.

Expect is also delivered with two interpreters. One is
expect, which is built on top of t c l s h . In many situations,
one might wish to use Expect with Tk graphics. This is the
purpose of the other interpreter, Expec t k . It is a version of
Expect built on top of wish. Expect is freely available from
the Expect website listed at the end of this column.

Let’s try an Expect example. This example will only work
as written on a Unix machine. On Windows and Macintosh
machines, it is not as simple, but the details may be found in
the “Exploring Expect” book, which is discussed later. Type
the following into a plain text file called exscript :

set address \

spawn f tp f t p .uu .ne t
expect “ N a m e ‘I
exp-send f t p \ r ”

expect ” Password : ‘I
exp-send “$address\r”
expect ” f tp> ‘I

exp-send ”cd pub\r”
i n t e r a c t
exit

“replace-withqrour-e-mail-address“

Now, type “expect exscript”. This will cause
expect to start, and then to follow the commands in the script,
which will cause it to store your e-mail address in a Tcl
variable called address, start up an ftp command to ftp.uu.net,
wait for the ftp command to prompt for your username, then
send the string “ftp” followed by a return, wait for ftp to send a
password prompt, then send your e-mail address, wait for an ftp
prompt, then change directories to /pub, and then allow you to
interact with the ftp program directly. When you quit the ftp
program, the control will return to the expect script, where the
exit statement will cause expect to exit, returning control to
you. What happens if no connection can be made to ftp.uu.net?
Or if this machine does not allow anonymous ftp? The script
can be written to be much more clever in order to handle these
possibilities, but this is beyond the scope of this column.

A GUI for an Interactive Code

As an example, let us assume that a finite-difference time-
domain (FDTD) code exists which is interactive. This code
provides a prompt “f d t d > ”, waits for the user to type a
command, performs that command, then issues another prompt.
Sample commands are:

new-geom new-geometry-file-name
timestep number-of-timesteps
trace x, y, 2 , t p
far-fields thl , th2,dth,phl,ph2,dph
ex i t

A code of this type is useful when the late-time convergence of
a problem is unknown, as the user can examine far-field

patterns at a number of time steps and interactively decide
when the code has converged.

As the above Expect example demonstrated, this would be
easy to automate, if we could write a script that would store the
options to each command in Tcl variables. However, as we
don’t know these at the time we write the code, we can use Tk
widgets to allow the user to enter these variables. A partial
implementation of a GUI for this code might have start and
stop buttons, to start and stop the FDTD code, and then a row
of widgets for each option, with a button to execute that option.
The Expectk script attached to each button would build its
command by reading the widgets on it’s row, and using
exp-send to send that command to the FDTD program. It
could read any returned information using Expect, and would
wait for the FDTD program’s prompt before accepting more
actions from the user. Someone that has been working with
Tcl/Tk and Expect for a short time could write this type of GUI
in a few days, and an experienced programmed could probably
write it in a few hours.

More Information

A large amount of additional information on Tcl/Tk and
Expect is available. A few books that I have found particularly
useful are: Tcl and the Tk Toolkit, John Ousterhout, Addison-
Wesley Publishing, 1994, Practical Programming in Tcl and
T k , Brent Mead, Prentice-Hall, 1997, Effective TcVTk
Programming , Michael McLennan, Addison-Wesley
Publishing, 1998, and Exploring Expect, Don Libes, O’Reilly
& Associates, 1996. Tcl/Tk and Expect information is also
available on the web. Two good starting points are
http://www.tclconsortium.org/, and http://expect.nist.gov/.
Additionally, the newsgroup comp.lang.tc1 is a good place to
read about some common (and uncommon) problems, and to
attempt to find answers to questions that are not answered in
the web sites. Additionally, all the codes and links listed in this
column are available at the web si te:
http://emlib.jpl.nasa.gov/EMLIB/GW.

The research described in this column was carried out at
the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration. Reference herein to any specific
commercial or non-commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not
constitute or imply endorsement by the United States
Government or the Jet Propulsion Laboratory, California
Institute of Technology.

Comments are welcome at the e-mail address given on the
first page.

http://ftp.uu.net
http://ftp.uu.net
http://www.tclconsortium.org
http://expect.nist.gov
http://emlib.jpl.nasa.gov/EMLIB/GW

